
The UC3M team at the Knowledge Base Population task

César de Pablo-Sánchez, Juan Perea,
Isabel Segura-Bedmar, Paloma Mart́ınez

{cdepablo,jiperea,isegura,pmf}@inf.uc3m.es
Computer Science Department

Universidad Carlos III de Madrid
28911 Leganés, Spain

Abstract

The UC3M team participated in the two subtasks proposed in the Knowledge Base Popu-
lation (KBP) task at TAC09. We adapted open-source systems to propose initial solutions to
both tasks, Entity Linking and Slot Filling. In Entity Linking we have indexed entities and
related documents in the Knowledge Base using Lucene. We experimented with different entity
representations and TF-IDF similarity measures as a baseline. For the Slot Filling task, we
reused Open-Ephyra QA system and combined several extraction strategies and sources like the
Web. Our experiments confirm that the Web may be useful to locate more slot values in a local
collection, but more accurate confidence estimation methods are needed to avoid updating the
KB with spurious values.

1 Introduction

The KBP task has proposed the challenge of automatically updating of a large Knowlege Base
(KB) by extracting new and timely information from a textual collection. The focus of the
task has been directed to two of the most basic operations. The first subtask, Entity Linking
(EL), consists on disambiguating individual textual references of entities to their representation
on the KB. For example, a mention like Michael Jordan in a document could refer to several
personal entities and the correct one in the KB should be identified. Besides, it could be that
the mention refers to a completely different person which has no associated node in the KB yet.
The second task, Slot Filling (SF), involves the acquisition of values for characteristic relations
and attributes for the target entities. Besides, those slots values that refer to entities in the KB
should be linked to the correct nodes too.

In the current setting, the KB has been generated automatically from structured information
from Wikipedia. The KB contains 818.741 different entities of three different types; persons
(PER), organizations(ORG) and geo-political locations (GPE). A number of generic slots for
each of the types are also defined and outlined in the appendix. Slot values have been also
filled automatically by mapping Wikipedia infofoxes to the generic slots. No normalization on
the textual values has been carried but named values which corresponds to entities in the KB
are transformed into links between entities. The mapping between the Wikipedia infoboxes
and the generic slot values is also provided though Wikipedia infoboxes use a much larger and
inconsistent categorization as it is community generated but no control or typing mechanism is
enforced. The source document collection is mainly composed of newswire text from different
press agencies. There are also a small number of documents with different genres, like broadcast

news transcriptions and weblogs. The collection contains about 1.3 million documents that span
from 1994 to the end of 2008.

We have participated in both subtask with the aim of establishing a foundation for future
work in the task. Our focus has been on establishing a set of tools based on open-source
software that we can improve in folowing participations with our own developments. We have
submitted one run for the Entity Linking task and three in the Slot Filling task using different
configurations. The two subsystems have not been integrated yet so we did not attempt to
link filled slots to the KB. The following sections describe each of the systems and the results
obtained in the task. Last section presents some general conclusions and future work we plan
to address.

2 Entity Linking

Given a set formed by a list of entities organized in a knowledge base, a document corpus, and
a list of [name-string, document] queries, the Entity Linking task will have to determine, for
each of the queries, which of the entities in the knowledge base, if any, is being referred to by
the name-string in the given document.

Each entity in the knowledge base contains title, name, type, id, some plain text, and several
facts of different types in the form of a [name, value] pair, being all this data extracted from a
Wikipedia snapshot. There are three types of entities: persons, organizations, and geo-political
entities.

An additional [knowledge base, document corpus, query list] set is supplied for testing pur-
poses. This set is substantially reduced compared to the full set, but it contains the solution
for each query, so it could be used not only for testing but also for manual tuning or automatic
learning purposes

2.1 Approach

Being our first incursion into the Entity Linking task, and due to the lack of time, the approach
had to be as simple and flexible as possible, as most probably some of the ideas could not be
implemented in time.

Our initial idea involved using a text indexing and searching tool to disambiguate by match-
ing the information in each proposed document with the information in the knowledge base
entities. Some heuristics could be used to create fields not directly present in the knowledge
base entities, to unify field names, or to create new field values. Using a named-entity extraction
tool could help to extract some information from the plain text. And finally, in case we had
time and information enough, a learning algorithm, probably based on another external tool,
could be implemented to help with the tuning tasks.

Once indices have been created, each query is solved using a two-phase algorithm. In a first
stage, a list of candidate entities is obtained. For an entity to be a candidate, it needs to have
some similarity in any relevant field with the name-string in the query. This similarity could
also be with any synonym, alias or acronym extracted from the name-string itself or even from
the document text.

The second stage chooses the best entity from the candidate list, or returns NIL if none of
the candidates is good enough. Once it is well tuned, this will be the most important part of
the process. The simplest algorithm for this second stage is just a pass- through algorithm that
returns the candidate entity that gets a higher score in the first stage. A threshold is be defined
so that NIL is returned when the Lucene score is below that value.

Finally, in case the given queries contain information about solutions, statistics are collected
and analyzed. This feedback helps to improve the process in either phase, as indices, algorithms,
formulae and coefficients are adjusted to achieve better results.

Figure 1: Entity Linking system design

2.2 System description

Our final system relies on two external tools: a text indexing and searching tool and a named-
entity recognition tool.

The chosen text indexing and searching tool is the well-known Apache Lucene information
retrieval open-source library 1. Lucene can create indices of documents containing different
fields, and perform text searching on them. For each query, it can return a scored list of
matching documents, so it fits our needs quite nicely.

To find entity names in the text associated with both entities and articles, the Stanford
NERC 2 [3] library is used. It returns all entity names found in a given plain text, classified as
persons, organizations and geo-political entities, this is, the same types of entities the task will
deal with.

The system is also configurable to deal with different [knowledge base, document corpus,
query list] sets.

2.2.1 Indexing

Before any query can be run, the knowledge base entities and the article corpus need to be
indexed using Lucene. A Lucene document is a collection of [field name, value] pairs which
can be multi-valued. Searches are executed only against the knowledge base index; the article
corpus index is created solely for storage purposes, as locating an article in the file system could
be quite tedious given the amount of directories.

For each entity in the knowledge base, a document is created containing the following fields:

• Fields wikiTitle, name, type, id and wikiText are created from the analogous fields in
the XML element that holds the entity.

• The complete list of [fact name, fact value] pairs are translated to fields.

• Field search contains all the possible name strings the entity could be referred to by. This
includes:

– The entity name

1http://lucene.apache.org
2http://nlp.stanford.edu/ner/index.shtml

run non-NIL queries (1675) NIL queries (2229) total (3902)
UC3M1 38.41% 0.99 % 17.09%

Table 1: Micro-averaging Accuracy results for the EL-UC3M1 run

– Some relevant optional facts (alias, birth name, nickname, company name, etc.)
– Acronyms derived from the entity name.

2.2.2 Stage 1 - Obtaining a candidate list

The candidate list is obtained by simply running a Lucene search on the search field of the
knowledge base. This search returns a scored list of documents, and all entities corresponding
to documents whose score is above a given threshold are included in the candidate list. Most
of the correctness of this stage relies on the creation of the search field during indexing. Final
analysis should check that a very high percentage of solutions are included in the candidate list;
if this fails, it means more name strings should be appended to the search field.

2.2.3 Stage 2 - Getting the best candidate, if any

The first algorithm that returns a possible best candidate in the list is also the simplest one: it
just returns the entity that achieves a highest score in the previous stage. If this score is not
above a given threshold NIL will be returned. This is of course not the best algorithm, but it
is the one we used in Run #1. Being quite simple, this algorithm admits some improvement
by applying a formula on the score based on the way the search field is created and the way
Lucene calculates document scores, but we have not investigated this part. An easy way to tune
this algorithm is adjusting the threshold according to the final statistics.

A second algorithm was implemented but not used in any submitted run. For each query, it
calculates the overlap between the target entity facts and the document. Additional tuning of
weight parameters need to be performed and was not complete to submit any run.

2.3 Results

Only one run based on the first algorithm described in stage 2 was submitted, as we were not
in time for submitting a run based on the second algorithm. This run uses algorithm #1 for
stage 2. The micro-averaged results obtained are:

Obtained results are not good, but numbers in the non-NIL chapter are by far better than
expected given the simplicity of the algorithm used in stage 2. Using the second algorithm, after
some improvements, should reward more acceptable results.

With regard to the external tools used, Lucene has shown to be a good tool for stage 1, and
the tests done show it can integrate quite well in the algorithm for stage 2. Stanford NER has
been able to extract some relevant information from plain text, but cannot be used as thoroughly
as we intended when time is a concern.

Once we get larger training set and analyze the complete statistics, we can start working on
improving the algorithms for stage 1 (by sketching out more heuristics to get better candidate
lists) and for stage 2 (by learning weights for the second algorithm).

3 Slot Filling

The objective of the Slot Filling task is to harvest new values from the document collection
for the predefined attributes of the entities in the KB. In this task each query is formed by a

Figure 2: Slot Filling architecture (Shaded modules are not used)

target entity and additional information like their type, their unique ID in the KB (optional)
and a document ID that provide additional context. Values for the slots defined for that type
(see Appendix) should be filled at least something different is provided in the ignore field. The
expected answer is a list of slot names and attributes values. Optionally some of this values could
be linked to the Knowledge Base as they refer to other persons, organizations and geopolitical
locations.

We approached the task from a Question Answering (QA) perspective and reused the open-
source OpenEphyra 3 system to fill slot values. OpenEphyra is a modular QA systems which
implements a pipeline architecture as depicted in Figure 2. It includes several modules and
strategies for Question Analysis, Query Generation, Search and Answer Extraction and Selec-
tion. For example, a document retrieval module uses Indri4 [6] for retrieving documents from
a local collection while a compatible document retrieval module could query Google or Ya-
hoo instead. There are three different Answer Extraction strategies implemented as filters and
based on the use of Answer Types, Pattern Types and semantic extraction based on a Semantic
Role Labeller. We decided to experiment with different system configurations and the existing
extraction strategies.

A QA system is designed to answer questions in natural language like What is the population
of Zahle? or Who is the major of Zahle but also open questions Name beverages that are produced
in Zhale. In order to use a QA system for filling slots we found two different alternatives. The
first option, using the QA as a black-box should consider to manually write question templates
for each of the slots to fill. The second option, using the QA as a glass box reuses the internal

3http://www.ephyra.info
4http://lemurproject.org/indri

Question –
Keywords John Doe
Keyterms –
NamedEntities [John Doe/NEperson]
Focus John Doe
AnswerTypes NEdate
QuestionInterpretation TARGET John Doe

CONTEXT –
PROPERTY DATEOFBIRTH

Predicates –
IsFactoid true

Table 2: Mapping a query for slot per:date of birth to question analysis

question representation to represent the slot filling requests. Both approaches have pros and
cons, but we focused on the second as our initial interest was to introduce additional answer
strategies. Even in a modular system like OpenEphyra the main disadvantage is that it requires
detailed knowledge of the components. On the other hand, the disadvantages of the black box
approach are also clear from an initial inspection. Some of the slots could require to generate
several questions (e.g gpe:parents, per:parents or org:alternate names) and then combine
them. Moreover, we would have less control over the correct interpretation of the questions
which could mean that it triggers an erroneous extraction process.

Once we opted for the glass-box approach, we defined a new QA pipeline that bypass the
Question Analysis step. In their place a Slot Filling Query Analysis module takes a query and
produce several analyzed questions, one for each slot to be filled. The OpenEphyra question
analysis representation is reused and each slot is mapped to an Answer Type and a Pattern Type.
Slot names are mapped to the Answer Extraction resources that are available in OpenEphyra
and detailed in the Appendix. The Answer Type Filter applies NE type restrictions to select
answers or slot values. It uses a mixture of machine learning NE recognizers (Stanford NERC
tagger), regular expressions and name lists. The Answer Pattern Filter applies generalized
relation patterns that have been acquired from the Web as described in [5]. No additional
training was performed to acquire patterns beyond those used in the open-source distribution.
The coverage of slots is relatively high (see Table 3) as the types has been derived and refined
throughout TREC QA competitions. Finally, the Semantic Extraction Filter is described in [4]
but was not used in any of the configurations. An example of how a slot request is transformed
into a internal question representation is shown in Table 2. We have opted for the simplest
representation which uses just one Answer Type, one Question Interpretation (Pattern type)
and no additional keywords beyond the entity name. Unfortunately, we cannot guarantee that
this is the most effective way to use the QA system or that we used and tuned the system
correctly.

Other slot predicate characteristics that have been provided in the guidelines like values
types (Names, Values or Strings) and cardinality (Single or List) are also used. For example,
OpenEphyra generates the same rank of answers for single and list questions. The first top
ranked answer is used to fill Single valued slots while a threshold is used to select the cut for a
list of answers. We also included information on whether the slot value is linkable, though we
did not integrate the Entity Linking module for the submitted runs. The document collection
was also adapted to be indexed with Indri at the sentence level, which is the representation used
by OpenEphyra to implement the Indri Knowledge Miner.

Target Type Slots Answer Type Pattern Type
PER 20 19 (95%) 15 (75%)
ORG 14 13 (93%) 8 (57%)
GPE 8 7 (88%) 5 (63%)
TOTAL 42 39 (93%) 28 (67%)

Table 3: Slot predicates coverage statistics

Run name Doc collection Answer Strategy
UC3M1 local collection Answer Pattern Filter,

Answer Type Filter
UC3M2 local collection Answer Pattern Filter
UC3M3 web and projection on

local collection
Answer Pattern Filter,
Answer Type Filter

3.1 Submitted Runs and Result Analysis

We submitted three different runs that have explored the use of different answer strategies and
also constrast with the use of the web. Our first run uses the local news collection as information
source and combines the Answer Pattern Filter (1) and the Answer Type Filter (2). The second
run has a similar configuration but uses only the Answer Pattern Filter (1). The third run uses
the Web as the source for slot values and later on, it projects the values to the local collection.
We have used the Yahoo Knowledge Miner to retrieve snippets and answers. For the three runs,
when no answer is found after running the QA system the slot value is filled with a NIL value.
This situation could be that no answer strategy is available, that no documents were retrieved
or that no answers were extracted at all.

Results for the three submited runs are presented in Table 4 together with a NIL-baseline.
The NIL baseline assigns a NIL value to every slot value which corresponds to a system that
do not perform any automatic update to the Knowledge Base. It has been turned out to be a
very strict baseline because there are only a small percentage of the slots that had a new value
in the collection. If a QA system is employed for the task of filling slots it is clear that a more
elaborated NIL strategy is required. Besides, the estimation of the confidence of answers need
to be improved too. On the other hand, for slots with new values our runs were able to obtain a
reasonable level of recall. Nevertheless, a large margin of improvement is possible as only about
a third of all the values are found in the single best performing run.

single list combined
all non-NIL NIL all non-NIL NIL

slot queries 255 39 216 499 129 370
run Acc Recall Recall F − score Recall Recall Acc

UC3M1 0.220 0.179 0.227 0.428 0.181 0.514 0.324
UC3M2 0.243 0.077 0.273 0.493 0.131 0.619 0.368
UC3M3 0.149 0.308 0.120 0.168 0.292 0.124 0.159
NIL-baseline 0.847 0.000 1.000 0.741 0.000 1.000 0.794

Table 4: Results for the three submitted runs for SF task

By comparing runs UC3M1 and UC3M2 that use different answering strategies, we can
conclude that the Answer Type strategy is a good back-off to retrieve additional slot values,
specially for single slot values. Nevertheless, the uc3m2 obtains a better overall accuracy as it
is more prone to produce NILs. It is not clear whether this is due to certains slots not having
an appropiate matching. We expect that a more detailed analysis by slot provide addiotional
information.

The comparison of runs UC3M1 and UC3M3, which use similar extraction strategies but
different source collections is also interesting. Run UC3M3 extracts slot values by querying
the web and those are then projected to the local collection. The improvement on the recall
of non-NIL slots is very significant and greatly outperforms the other two runs. On the other
hand as it proposes a much larger number of values it also generated more spurious values. It
seems clear that this strategy should be combined with a more elaborated confidence estimation
procedure in order to be effective for automatic filling of slots.

Finally, it is worth commenting the paradox that the runs that obtain better recall on the
non-NIL attributes do also obtain worst results in the overall task though they provide much
useful information. In our opinion, alternative evaluation measures should be investigated to
balance the weight of NIL slots and reflect the advance on populating a knowledge base.

4 Conclusions and Future Work

We have presented our first attempts to develop a system for automatic Knowledge Base Popu-
lation. Our system for Entity Linking indexes a KB representation using IR tools and provide
a ranked list of candidates. This list can later on be reranked or filtered using contextual in-
formation and additional knowledge. We believe that such approach is appropiate for large
KBs as the more expensive second stage is only applied to a small subset of the candidates.
Nevertheless, we expect to apply machine learning to improve the reranking of candidates as
well as the detection of entities that should not be linked.

The Slot Filling system is able to obtain a reasonable good recall for the discovery of new
slots values, specially when the web is used as an additional source that helps to locate values.
However, our QA system provides also a large number of spurious answers that would degrade
quickly the quality of the Knowledge Base and therefore more effort should be devoted to
estimate the confidence of extracted values. So far, we have used independent processes to
extract values, we believe that the collective filling of relared slots could be use to reduce some
of this errors.

In the reported runs we have used a simple configuration to reuse OpenEphyra components.
There are plenty of features to explore including the use of additional keywords and name
variations from the KB and the integration with the Entity Linking system that could improve
results. And interesting comparison betweeen the actual approach and the black-box approach
to reuse QA is also worth explored. Finally, we also expect to be able to extend our own
pattern acquisition approach based on bootstrapping [1, 2] and compare with other extraction
alternatives.

5 Acknowledgements

This work has been partially supported by the Regional Government of Madrid by means of the
Research Network MAVIR (S-0505/TIC/000267) and by the Spanish Ministry of Education by
means of the project BRAVO (TIN2007-67407-C3-01)

References

[1] César De Pablo-Sanchez and Paloma Martinez. Building a Graph of Names and Contextual
Patterns for Named Entity Classification. In European Conference in Information Retrieval
2009, 2009.

[2] César De Pablo-Sanchez and Paloma Martinez. UC3M at WePS2-AE: Acquiring Patterns
for People Attribute Extraction from Webpages. In Second Workshop on Web People Search
at WWW 2009, 2009.

[3] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local
information into information extraction systems by Gibbs sampling. Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics - ACL ’05, pages 363–370,
2005.

[4] N Schlaefer, J Ko, J Betteridge, G Sautter, Pathak Manas, and Eric Nyberg. Semantic exten-
sions of the Ephyra QA system for TREC 2007. of the Sixteenth Text REtrieval Conference
(TREC), 2007.

[5] Nico Schlaefer, Petra Gieselmann, Thomas Schaaf, and Alex Waibel. A Pattern Learning
Approach to Question Answering within the Ephyra Framework. In TSD ’06, pages 687–694,
2006.

[6] Trevor Strohman, Donald Metzler, Howard Turtle, and W. Bruce Croft. A language-model
based search engine for xomplex queries (extended version), 2005.

A Mapping between slots and OpenEphyra extraction re-
sources

PERSON
KBP definition Open Ephyra

Slot name Type Card Link NE type pattern type
per:alternate names N L 0 NEperson –
per:date of birth V S 0 NEdate DATEOFBIRTH
per:age V S 0 NEduration AGE
per:place of birth N S 1 NElocation PLACEOFBIRTH
per:origin N S 1 NElocation ORIGIN
per:date of death V S 0 NEdate DATEOFDEATH
per:place of death N S 1 NElocation PLACEOFDEATH
per:cause of death S S 1 – CAUSEOFDEATH
per:residences N L 1 NElocation –
per:schools attended N L 1 NEeducationalInstitution SCHOOL
per:title S L 0 NEprofession PROFESSION
per:member of N L 1 NEorganization MEMBERSHIP
per:employee of N L 1 NEorganization MEMBER
per:religion S S 0 NEreligion –
per:spouse N L 1 NEperson SPOUSE
per:children N L 1 NEperson ANCESTOR
per:parents N L 1 NEPerson FATHER
per:siblings N L 1 NEperson –
per:other family N L 1 NEperson –
per:charges S L 1 NEcrime KILLED

ORGANIZATION
KBP definition Open Ephyra

Slot name Type Card Link NE type pattern type
org:alternate names N L 0 – ABBREVIATION
org:political/religious affiliation N L 0 NEreligion –
org:top members/employees N L 1 NEperson FOUNDER
org:number of employees/members V S 0 NEcount NUMBEROFMEMBER
org:members N L 1 NEorganization –
org:member of N L 1 NEorganization –
org:subsidiaries N L 1 NEorganization FUNDING
org:parents N L 1 NEorganization FUNDER
org:founded by N L 1 NEperson FOUNDER
org:founded V S 0 NEdate DATEOFFOUNDATION
org:dissolved V S 0 NEdate DATEOFEND
org:headquarters N S 1 NElocation –
org:shareholders N L 1 NEorganization –
org:website S S 0 NEurl –

GEO POLITICAL ENTITIES
KBP definition Open Ephyra

Slot name Type Card Link NE type pattern type
gpe:alternate names N L 0 – –
gpe:capital N S 1 NElocation CAPITAL
gpe:subsidiary orgs N L 1 NEorganization –
gpe:top employees N L 1 NEperson LEADER
gpe:political parties N L 1 NEorganization –
gpe:established V S 0 NEdate DATEOFFOUNDATION
gpe:population V S 0 NEcount POPULATION
gpe:currency S S 0 NEmoney MONEY

